Package: mxfda 0.2.2

Alex Soupir

mxfda: A Functional Data Analysis Package for Spatial Single Cell Data

Methods and tools for deriving spatial summary functions from single-cell imaging data and performing functional data analyses. Functions can be applied to other single-cell technologies such as spatial transcriptomics. Functional regression and functional principal component analysis methods are in the 'refund' package <https://cran.r-project.org/package=refund> while calculation of the spatial summary functions are from the 'spatstat' package <https://spatstat.org/>.

Authors:Julia Wrobel [aut], Alex Soupir [aut, cre]

mxfda_0.2.2.tar.gz
mxfda_0.2.2.zip(r-4.5)mxfda_0.2.2.zip(r-4.4)mxfda_0.2.2.zip(r-4.3)
mxfda_0.2.2.tgz(r-4.4-any)mxfda_0.2.2.tgz(r-4.3-any)
mxfda_0.2.2.tar.gz(r-4.5-noble)mxfda_0.2.2.tar.gz(r-4.4-noble)
mxfda_0.2.2.tgz(r-4.4-emscripten)mxfda_0.2.2.tgz(r-4.3-emscripten)
mxfda.pdf |mxfda.html
mxfda/json (API)

# Install 'mxfda' in R:
install.packages('mxfda', repos = c('https://julia-wrobel.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/julia-wrobel/mxfda/issues

Datasets:
  • lung_FDA - Multiplex imaging data from a non-small cell lung cancer study
  • lung_df - Multiplex imaging data from a non-small cell lung cancer study.
  • ovarian_FDA - Multiplex imaging data from an ovarian cancer tumor microarray

On CRAN:

5.41 score 1 stars 8 scripts 207 downloads 35 exports 121 dependencies

Last updated 1 months agofrom:02bd0c2405. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winOKNov 13 2024
R-4.5-linuxOKNov 13 2024
R-4.4-winOKNov 13 2024
R-4.4-macOKNov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:%>%add_summary_functionbivariatecan_permuteentropyextract_cextract_entropyextract_fpca_objectextract_fpca_scoresextract_modelextract_spatial_summaryextract_summary_functionsextract_surfacefilter_datafilter_spatialGcrossGestget_datais.emptyKcrossKestLcrossLestmake_mxfdametric.existsone_zeroplot_fpcplot_mfpcrun_fcmrun_fpcarun_mfcmrun_mfpcarun_sofrspatialTIME_summary_functionsunivariate

Dependencies:abindashaudiobeeprbitopsbootbriocallrcliclustercodetoolscolorspacecpp11crayoncurldeldirdescdeSolvediffobjdigestdplyrevaluatefansifarverfdafdsFNNfsfuturefuture.applygamm4genericsggplot2globalsgluegoftestgrpreggtablehdrcdeisobandjsonlitekernlabKernSmoothkslabelinglatticelifecyclelistenvlme4locfitmagicmagrittrMASSMatrixmclustmgcvminqamulticoolmunsellmvtnormnlmenloptrparallellypbapplypbspcaPPpillarpkgbuildpkgconfigpkgloadplyrpolyclippracmapraiseprocessxprogressrpspurrrR.methodsS3R.ooR.utilsR6rainbowRColorBrewerRcppRcppEigenRCurlrefundreshape2rlangRLRsimrpartrprojrootRPushbulletscalessessioninfoSimDesignsnowSpatEntropyspatstatspatstat.dataspatstat.explorespatstat.geomspatstat.linnetspatstat.modelspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrtensortestthattibbletidyrtidyselectutf8vctrsviridisLitewaldowithr

Defining an mxFDA object

Rendered frommx_fda.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2024-10-04
Started: 2023-05-16

Functional principal component analysis for spatial summary functions

Rendered frommx_fpca.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2024-10-04
Started: 2023-11-16

Functional regression with spatial summary functions as covariates

Rendered frommx_funreg.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2024-10-04
Started: 2023-05-16